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Abstract

In this paper, we present a new area-based method for vi-
sual correspondence search that focuses on the dissimilar-
ity computation. Local and area-based matching methods
generally measure the similarity (or dissimilarity) between
the image pixels using local support windows. In this ap-
proach, an appropriate support window should be selected
adaptively for each pixel to make the measure reliable and
certain. Finding the optimal support window with an arbi-
trary shape and size is, however, very difficult and gener-
ally known as an NP-hard problem. For this reason,unlike
the existing methods that try to find an optimal support win-
dow, we adjusted the support-weight of each pixel in a given
support window. The adaptive support-weight of a pixel
is computed based on the photometric and geometric rela-
tionship with the pixel under consideration. Dissimilarity is
then computed using the raw matching costs and support-
weights of both support windows, and the correspondence
is finally selected by the WTA (Winner-Takes-All) method.
The experimental results for the rectified real images show
that the proposed method successfully produces piecewise
smooth disparity maps while preserving sharp depth dis-
continuities accurately.

1. Introduction

The crux of visual correspondence search is the image
ambiguity, which results from the ambiguous local appear-
ances of the image pixels due to image noise and insuffi-
cient (or repetitive) texture. When the local structures of
the image pixels are similar, it may be very difficult to find
their correspondences in other images without any global
reasoning.

To properly deal with the image ambiguity problem, lo-
cal and area-based methods generally use some kind of sta-
tistical correlation between color or intensity patterns in the
local support windows. By using local support windows,

image ambiguity is reduced efficiently while the discrimi-
native power of the similarity measure is increased. In this
approach, it is implicitly assumed that all pixels in a support
window are from similar depth in a scene and, therefore,
that they have similar disparities. Accordingly, pixels in
homogeneous regions get assigned the disparities inferred
from the disparities of neighboring pixels. However, sup-
port windows that are located on depth discontinuities rep-
resent pixels from different depth, and this may result in the
‘foreground-fattening’ phenomenon.

To obtain more accurate results not only at depth dis-
continuities but also in homogeneous regions, an appropri-
ate support window should be selected for each pixel adap-
tively. To this end, many methods have been proposed.
They can be roughly divided into several categories accord-
ing to their techniques.

Adaptive-window methods [1], [2], [3], [4] try to find an
optimal support window for each pixel by changing the size
and shape of a window adaptively. Kanade and Okutomi
[1] presented a method to select an appropriate window by
evaluating the local variation of intensity and disparity. This
method is, however, highly dependent on the initial dispar-
ity estimation and is computationally expensive. Moreover,
the shape of a support window is constrained to a rectan-
gle, which is not appropriate for the pixels near arbitrarily
shaped depth discontinuities. On the other hand, Boykov et
al. [2] tried to choose an arbitrarily shaped connected win-
dow. They performed plausibility hypothesis testing and
computed a correct window for each pixel. In [3] and [4],
Veksler found a useful range of window sizes and shapes
to explore while evaluating the window cost, which works
well for comparing windows of different sizes. However,
the shapes of the support windows used are not general, and
this method needs many user-specified parameters for the
window cost computation.

Multiple-window methods [5], [6], [7] select an optimal
support window among the pre-defined multiple windows,
which are located at different positions with the same shape.
Fusiello et al. [5] performed the correlation with nine dif-



ferent windows for each pixel and retained the disparity
with the smallest matching cost. Kang et al. [7] also pre-
sented the multiple-window method that examines all win-
dows containing the pixel of interest.

Although the methods mentioned above improve perfor-
mance, they have a limitation in common: the shape of a
local support window is not general. In fact, finding the
optimal support window with an arbitrary shape and size is
very difficult and generally known as an NP-hard problem.
For this reason, the methods limit their search space by con-
straining the shape of a support window. Rectangular- and
constrained-shaped windows, however, may be inappropri-
ate for the pixels near arbitrarily shaped depth discontinu-
ities. To resolve this problem, segmentation-based meth-
ods [8], [9] use segmented regions with arbitrary size and
shapes as support windows. In this approach, it is also im-
plicitly assumed that the disparities vary smoothly in each
region. However, these methods require precise color seg-
mentation that is very difficult when dealing with highly
textured images.

Some methods [10], [11], [12] try to assign appropriate
support-weights to the pixels in a support window while fix-
ing the shape and size of a local support window. Prazdny
[10] proposed a new function to assign support-weights to
neighboring pixels iteratively. In this method, it is assumed
that neighboring disparities, if corresponding to the same
object in a scene, are similar and that two neighboring pix-
els with similar disparities support each other. Xu at al.
[12] also presented an algorithm that determines the adap-
tive support-weight by radial computations. They used the
certainties of the initial disparity distribution to determine
the support-weight. These methods, however, are depen-
dent on the initial disparity estimation, which may be erro-
neous.

In this paper, we propose a new correspondence search
method to get accurate results at depth discontinuities as
well as in homogeneous regions. We adjusted the support-
weights of the pixels in a given window by using the pho-
tometric and geometric relationship with the pixel under
consideration. Dissimilarity is then computed using the
support-weights of the pixels in the support windows, and
the correspondence is finally selected by the WTA (Winner-
Takes-All) method. Since the adaptive support-weight com-
putation is based on the contextual information within a
support window, the proposed method does not depend on
the initial disparity estimation at all.

The proposed method is composed of three parts: locally
adaptive support-weight computation, dissimilarity compu-
tation based on the support-weights, and disparity selection.
We give a detailed explanation for each part in Secs. 2–3,
and experimental results are shown in Sec. 4. We then dis-
cuss the proposed method in Sec. 5 and conclude the paper
in Sec. 6.

2. Locally Adaptive Support-Weight Computa-
tion

When aggregating support to measure the similarity be-
tween image pixels, support from a neighboring pixel is
valid only when the neighboring pixel is from the same
depth – it has the same disparity – as the pixel under con-
sideration. Therefore, the support-weight should be in pro-
portion to the probability that the pixels have the same dis-
parity. Assuming that images are rectified without loss of
generality, this can be expressed as

w(p, q) ∝ Pr(dp = dq) (1)

where p is the pixel under consideration and q is the other
pixel in the support window of p, Np. w(p, q) represents
the support-weight of the pixel q. dp and dq represent the
disparities of pixel p and q, respectively, and Pr(dp = dq)
is the probability of the event {dp = dq}. It is worthy of
notice that the support-weight of a pixel is not dependent
on the disparity d and w(p, q) = w(q, p).

The support-weight computation is then specified as the
estimation of a probability, Pr(dp = dq) in (1). However,
we do not know the disparities of the pixels beforehand be-
cause they are what we want to compute. For this reason,
some methods [1], [10], [12] iteratively update the support
windows or support-weights. The iterative methods, how-
ever, are very sensitive to the initial disparity estimation and
are computationally expensive. To resolve this dilemma,
we observed the mechanism performed in the human visual
system for correspondence search. In fact, the proposed
method originated from the observation that the pixels in
a support window are not equally important in the support
aggregation step in the human visual system.

2.1. Support aggregation in the human visual sys-
tem

According to the gestalt principles of perception, when
perceiving a visual field, some objects (figures) seem promi-
nent, and other aspects of field recede into the background
(ground). This is because similar elements are contrasted
with dissimilar elements to give the impression of a whole.
This is referred to as figure-ground discrimination and is
accomplished by the grouping process [13]. In addition,
according to Marr’s stages of visual processing [14], stere-
opsis is performed by using full primal sketches, which are
constructed from raw primal sketches by applying various
gestalt principles to resolve ambiguities.

From these facts, we can infer that when perceiving
depth with binocular disparities, the human visual system
makes figures by gestalt grouping and uses them as support
regions. It is, therefore, reasonable to assume that support



(a) left support win-
dow

(b) right support win-
dow

(c) color difference
between (a) and (b)

Figure 1. Difference between support windows

aggregation is achieved in the support window formed by
gestalt grouping and that the difference in the background
does not affect the correspondence search. For example,
when trying to find the correspondence of the apex of a red
cone in Fig. 1(a), the red cone is used as the support re-
gion and the difference in background does not matter at
all, although it is very severe when the apex of a red cone is
matched as shown in Fig. 1(c).

2.2. Gestalt grouping

As described in Sec. 2.1, visual grouping is very im-
portant to form a support window and to compute support-
weights, and therefore, the gestalt principles can be used to
compute support-weights.

There are many visual cues used for perceptual group-
ing. Among them, similarity and proximity are the two
main grouping concepts in the classic gestalt theory: sim-
ilarity refers to what items look like and how that affects
grouping, and proximity refers to where items are and how
that affects grouping. The gestalt rule of organization based
on the similarity (or smoothness) and proximity is one of
the most important ones and has been widely used in vision
research [15], [16], [17].

The gestalt principles of similarity and proximity are
also used to compute support-weights. We compute the
support-weight of a pixel based on the strength of grouping
by similarity and proximity – the support-weight is in pro-
portion to the strength of grouping. The more similar the
color of a pixel, the larger the support-weight of the pixel.
In addition, the closer the pixel is, the larger the support-
weight. The former is related to the grouping by similarity,
and the latter is related to the grouping by proximity. Al-
though these two rules are usually stated separately, they
must be treated as a single rule in an integrated manner to
get reasonable grouping.

2.3. Support-weight based on the gestalt grouping

Based on the gestalt principles described above, support-
weight can be rewritten as

w(p, q) = k · f(∆cpq,∆gpq) (2)

where k is a proportion constant. ∆cpq and ∆gpq represent
the color difference and the spatial distance between pixel p
and q, respectively. The former is the measure of similarity
and the latter is the measure of proximity. f(∆cpq,∆gpq)
represents the strength of grouping by similarity and prox-
imity when ∆cpq and ∆gpq are given. Here, ∆cpq and ∆gpq

can be regarded as independent events, and the strength of
grouping by similarity and proximity can be measured sep-
arately. Then, f(∆cpq,∆gpq) can be expressed as

f(∆cpq,∆gpq) = fs(∆cpq) · fp(∆gpq) (3)

where fs(∆cpq) and fp(∆gpq) represent the strength of
grouping by similarity and proximity, respectively. We then
compute the adaptive support-weights using the following
equation:

w(p, q) = k · fs(∆cpq) · fp(∆gpq) (4)

As shown in (4), the core of the support-weight compu-
tation is how to model the strength of grouping by color
similarity, fs(∆cpq), and the strength of grouping by prox-
imity, fp(∆gpq). These should be modeled based on the
perceptual difference measures.

2.4. Strength of grouping by similarity

The difference between two pixel colors is measured in
the CIELab color space, because the CIELab color space
provides a three-dimensional representation for the percep-
tion of color stimuli. As the distance in the CIELab color
space between two points increases, it is reasonable to as-
sume that the perceived color difference between the stimuli
that the two points represent increases accordingly. Espe-
cially, short Euclidean distances correlate strongly with the
human color discrimination performance. When ∆cpq rep-
resents the Euclidean distance between two colors, cp =
[Lp, ap, bp] and cq = [Lq, aq, bq], in the CIELab color
space, it can be expressed as

∆cpq =
√

(Lp − Lq)2 + (ap − aq)2 + (bp − bq)2 (5)

The perceptual difference between two colors is then ex-
pressed as

D(p, q) = 1 − exp(−∆cpq

γ
) (6)

where γ is typically 14.
Based on (6), the strength of grouping by color similarity

is defined using the Laplacian kernel as

fs(∆cpq) = exp(−∆cpq

γc
) (7)

Here, we set γc = 1
2γ so that e−

∆cpq
γc = (e−

∆cpq
γ )2.



2.5. Strength of grouping by proximity

The strength of grouping by proximity is defined in
the same manner. According to the gestalt principle of
proximity, the support-weight of a pixel decreases as the
spatial distance to the pixel under consideration increases.
Here, as in the color difference, only small spatial distances
strongly correlate with the human discrimination perfor-
mance. Therefore, the strength of grouping by proximity
is defined using the Laplacian kernel as

fp(∆gpq) = exp(−∆gpq

γp
) (8)

where γp is determined empirically.

2.6. Locally adaptive support-weight computation

According to (7) and (8), (4) can be rewritten as

w(p, q) = k · exp
(
−(

∆cpq

γc
+

∆gpq

γp
)
)

(9)

Here, it is worthy of notice that the proposed method
does not depend on the initial disparity estimation at all be-
cause the adaptive support-weight computation is entirely
based on the contextual information within a given support
window.

It is also remarkable that the support-weight of q com-
puted by (9) is generally in proportion to the probability
that q has the same disparity with p as expressed in (1). In
fact, when two pixels have similar colors, it is reasonable
to assume that they are from the same smooth surface in a
scene as assumed in segmentation-based methods. In addi-
tion, the pixel in a support window is generally expected to
be from the same smooth surface as the pixels under con-
sideration; this expectation is less certain the farther the pix-
els in a support window is from the pixel under considera-
tion. Therefore, we can get support-weights proportional to
Pr(dp = dq) using (9) approximately.

3. Dissimilarity Computation and Disparity
Selection

The dissimilarity (i.e. the matching cost) between pix-
els is then measured by aggregating the raw matching costs
with the support-weights in the support windows. In this
step, unlike existing methods, we take into account the
support-weights of both the reference and target support
windows. When only considering the reference support
window, the dissimilarity measure may be erroneous be-
cause the target support window may have pixels from dif-
ferent depth. To minimize the effect of such pixels, we
compute the dissimilarity between pixels by combining the

p

q

pd

qd right image

left image

d

Np
d

x

Np

Figure 2. Reference support window (Np) and target support win-
dow (Np̄d ) when dp = d

support-weights of both support windows. The combined
support-weights encourage the points that are likely to have
similar disparities with the centered pixels in both images.
The dissimilarity between pixel p and p̄d, E(p, p̄d), can be
expressed as

E(p, p̄d) =

∑
q∈Np,q̄d∈Np̄d

w(p, q)w(p̄d, q̄d)e0(q, q̄d)∑
q∈Np,q̄d∈Np̄d

w(p, q)w(p̄d, q̄d)
(10)

where p̄d and q̄d are the corresponding pixels in the other
image when the pixel p and q have disparity d as shown in
Fig. 2. e0(q, q̄d) represents the pixel-based raw matching
cost computed by using the colors of q and q̄d. When using
AD (absolute difference), it can be expressed as

e0(q, q̄d) =
∑

c∈{r,g,b}
|Ic(q) − Ic(q̄d)| (11)

where Ic is the intensity of the color band c.
After the dissimilarity computation, the disparity for

each pixel is simply selected by the WTA (Winner-Takes-
All) method without any global reasoning as

dp = arg min
d∈Sd

E(p, p̄d) (12)

where Sd = {dmin, · · · , dmax} is a set of all possible dis-
parity values.

4. Experiments

4.1. Support-weight computation

Figures 3–4 show the results of support-weight compu-
tation for the reference and target support windows. The
small blue rectangle indicates the pixel under consideration.
The support-weights for each support window are computed
independently and combined as shown in Fig. 5. We can
see that the local structures of the support windows are re-
flected in the combined support-weights. Similarity is then
computed by (10) using the combined support-weights.



(a) ref. windows (b) weights of (a) (c) tar. windows (d) weights of (c)

Figure 3. Support-weight computation (1)

(a) ref. window (b) weights of (a) (c) tar. window (d) weights of (c)

Figure 4. Support-weight computation (2)

4.2. Correspondence search for the images with
ground truth

We evaluated the performance of the proposed method
using the images with ground truth. We then compared the
performance of the proposed method with those of other
local and area-based methods [3], [4], [7], [19], which per-
form well among the area-based local methods, as in [18].

Figure 6 shows a result for a synthetic image. The left
image and ground truth are shown in Fig. 6(a) and 6(b).
The proposed method produces a accurate disparity map as
shown in Fig. 6(f). In particular, the depth discontinuities
are preserved very well. On the other hand, other methods
fail to preserve the depth discontinuities.

More dense matching results for real images, which are
often used for the performance comparison of various meth-
ods [18], are shown in Figs. 7–8. The proposed algorithm
is run with a constant parameter setting across all four im-
ages: the size of a support window = (33 × 33), γc = 7,
γp = 36. As shown in Figs. 7–8, the proposed method
yields accurate results at the depth discontinuities as well as
in the homogeneous regions for the testbed images.

The performance of the proposed method for the testbed
images is summarized in Table 1 to compare the perfor-

(a) weights for Fig. 3 (b) weights for Fig. 4

Figure 5. Combined support-weights

(a) left image (b) ground truth (c) SAD

(d) shiftable win. [7] (e) Bay. diff. [19] (f) proposed

Figure 6. Dense disparity map for a synthetic image

mance with others. The numbers in Table 1 represent the
percentage of bad pixels (i.e., pixel whose absolute dispar-
ity error is greater than 1) for all pixels, pixels in untex-
tured areas (except for the ‘Map’ image), and pixels near
depth discontinuities. Only non-occluded pixels are consid-
ered in all three cases, and we ignore a border of 10 (18 for
the ‘Tsukuba’ image) pixels when computing statistics. As
shown in Table 1, the proposed method is roughly the best
among the state-of-the-art area-based local methods. Par-
ticularly, the performance near the depth discontinuities is
much better than the others, because the proposed method
can preserve arbitrarily shaped depth discontinuities well
while the methods using rectangular- or constrained-shaped
windows cannot.

5. Discussion

5.1. Sensitivity to the size of a support window

Fig. 9 shows the performance of the proposed method,
the SAD (sum of absolute difference) and the SSD (sum of
squared difference) based methods, and the shiftable win-
dow method [7] for the ‘Map’ image according to the size
of the support window. In this case, we increased the γp

value in (9) according to the size of the support window for
a fair comparison. Fig. 9(a) shows the percentage of error
in the non-occluded area and Fig. 9(b) shows the percent-
age of error at the depth discontinuities. We can see that the
proposed method is fairly robust against different sizes of
the support window, while others are not. This is because
the effect of outliers (i.e., pixels from different depth) does
not increase in the proposed method even though the size
of the support window increases. We can get similar results
for other images.



(a) left image (b) ground truth (c) shiftable win. [7] (d) compact win. [3]

(e) variable win. [4] (f) Bay. diff. [19] (g) our result (h) bad pixels (error > 1)

Figure 7. Dense disparity map for the ‘Tsukuba’ image

Table 1. Performance comparison of the proposed method
���������algorithm

image Tsukuba Sawtooth Venus Map
all untex. disc. all untex. disc. all untex. disc. all disc.

variable win. [4] 2.35 1.65 12.17 1.28 0.23 7.09 1.23 1.16 13.35 0.24 2.98
compact win. [3] 3.36 3.54 12.91 1.61 0.45 7.87 1.67 2.18 13.24 0.33 3.94
shiftable win. [7] 5.23 3.80 24.66 2.21 0.72 13.97 3.74 6.82 12.94 0.66 9.35

Bay. diff. [19] 6.49 11.62 12.29 1.45 0.72 9.29 4.00 7.21 18.39 0.20 2.49
proposed 1.51 0.65 7.25 1.15 0.29 5.47 1.19 0.72 4.49 1.42 13.40

5.2. Correspondence search in the presence of spec-
ular reflection

Most correspondence search methods assume that the
surfaces in a scene are perfect Lambertian, and, therefore,
the colors of corresponding pixels are identical across all
images. The presence of specular reflection, however, is
inevitable in general. While diffuse reflection exhibits lit-
tle color variation from different viewing positions, specu-
lar reflection tends to change significantly in both color and
position. Therefore, the colors of the corresponding pixels
can be different when one of them has a specular reflection
component, and the similarity measure can be erroneous
for specular pixels in a support window. Nevertheless, to
the best of our knowledge, few local methods can deal with
specular reflection in correspondence search properly.

We can effectively handle the specular reflection in cor-
respondence search by using the proposed approach. Spec-
ular pixels in a support window should be regarded as
outliers in the dissimilarity computation because their raw
matching costs are uncertain. Therefore, to minimize the ef-
fect of specular pixels in the dissimilarity computation, we

assign small support-weights to specular pixels; the larger
the specular reflection component of the pixel, the smaller
the support-weight. This can be simply expressed as

Spq = exp
(
−Σspq

γs

)
(13)

where Σspq = (sp + sq). sp and sq are the specularity of
pixel p and q, which can be obtained by [20], and Spq rep-
resents the certainty of the raw matching costs of p and q
based on the specularity. The support-weight is then com-
puted as

w(p, q) = k · Spq · exp
(
−(

∆cpq

γc
+

∆gpq

γp
)
)

= k · exp
(
−(

∆cpq

γc
+

∆gpq

γp
+

Σspq

γs
)
)

(14)

Figure 10 shows the result of the support-weight com-
putation for a support window with specular reflection. As
shown in Fig. 10(a), the pixel of interest has a large specular
reflection component. By using the specularities of pixels
in Fig. 10(b), specular pixels get assigned smaller support-
weights than diffuse pixels as shown in Fig. 10(d).



(a) left image (b) ground truth (c) our result (d) bad pixels (error > 1)

Figure 8. Dense disparity maps for the ‘Sawtooth’, ‘Venus’, and ‘Map’ image
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Figure 9. Performance according to the window size

5.3. Connection with structure-preserving noise fil-
ters

It is very interesting that (9) used for support-weight
computation in the proposed method is very similar to
the functions used for computing adaptive weights in the
structure-preserving noise filters such as [21], [22]. This is
because the structure-preserving filters also use the adap-
tive weights based on intensity similarity and distance be-
tween pixels to remove image noise. As a result of us-
ing adaptive support-weights, the structure-preserving fil-
ters produce noise-removed smooth images while preserv-
ing the image structures (i.e., the intensity edges) well; the
proposed method produces smooth disparity maps while

(a) support win-
dow

(b) specularity of
(a)

(c) weights w/o
specular analysis

(d) weights with
specular analysis

Figure 10. Support-weight for a highlight region

preserving depth discontinuities well. In fact, the adaptive
support-weight approach is applicable to any applications
aimed at getting discontinuity-preserving smooth results.

6. Conclusions

In this paper, we proposed a new local area-based
method for visual correspondence search that focuses on
the dissimilarity computation step. Instead of finding an
optimal support window, we adjusted the support-weight
of each pixel in a given support window. The adaptive
support-weight of the pixel in a support window is com-
puted by measuring the strength of grouping by proxim-
ity and similarity. The experimental results show that the
proposed method produces accurate piecewise smooth dis-
parity maps. Particularly, the performance near the depth



discontinuities is much better than the others, because the
proposed method can preserve arbitrarily shaped depth dis-
continuities well while the methods using rectangular- or
constrained-shaped windows cannot.

The proposed method has some advantages. First, it does
not depend on the initial disparity estimation, because the
adaptive support-weight is computed noniteratively based
on the contextual information within a given support win-
dow. Second, the proposed method is fairly robust against
different sizes of a support window. In addition, the pro-
posed method can properly deal with the specular reflection
in the dissimilarity computation step.

The proposed method, however, is computationally a lit-
tle more expensive than other area-based methods for the
pixel-wise adaptive support-weight computation step. In
fact, the typical running time for the window size (33×33)
is about one minute on the AMD 2700+ machine. More-
over, although the proposed method works well for real im-
ages with little image noise, it may produce an erroneous
result when there is severe image noise because the color
difference used for the support-weight computation is mea-
sured by using an individual pixel color. We are now devel-
oping efficient techniques to make the proposed methods
faster and more robust against the image noise.
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